F. D. Medina and W. B. Daniels: Raman spectrum of solid nitrogen

low the peak and is possibly part of the instrumental profile made visible by the extreme elastic scattering from the sample. Figure 3 also shows an asymmetrical line in the stretching region with a frequency of 2331 cm⁻¹. Table V shows the results for different temperatures. 10. 13. 201

The librational frequencies calculated in the harmonic approximation including quadrupolar interactions to 12th nearest neighbors are $\omega(E_g) = 42 \text{ cm}^{-1}$ and $\omega(B_{1g}) = 82$ cm⁻¹. A calculation of the relative intensities for polarized incident light in the usual 90° scattering geometry yields the ratio 1.8:1 favoring the E, mode. 69 On the basis of these calculations the low and high frequency Raman lines are assigned to librational modes of E_s and Bis symmetry, respectively.58 The poor agreement between calculated and measured frequencies is to be expected since, at the higher densities corresponding to the γ phase, the repulsive part of the potential becomes more important. Calculations using the 6-1238 and 6-exp⁶⁸ atom-atom potentials are in good agreement. with experiment.

The strong temperature dependence of the Bis librational frequency seems to point to a softening of this mode as the γ to β transition is approached. In going to the β phase, where the molecular centers are arranged in an hcp structure, the square faces of the unit cell of $\gamma-N_2$ shown in Fig. 2 have to be sheared. The B_{1s} librational mode, which corresponds to librations in the plane of the square faces, can then become soft through coup-

Temperature	Frequency (cm ⁻¹)	Relative integrated intensity
` .	57.5	2
35 °K	95.5	4.5
	2329	1
1. 12	58.2	5.5
20°K	102.5	3
	2330	5 1
	58.4	7
8°K	103.6	2.5

TABLE V. Observed Raman frequencies and relative intensi-

155

ling to the infrared active E, translational mode that corresponds to the shearing motion.

B. Volume dependence of the Raman frequencies in the a phase

Figure 4 shows the Raman spectrum in the lattice region of the a phase. Three sharp lines are observed corresponding to librations of E_{g} , T_{g} , and T_{g} symmetry, in agreement with previous results.¹⁹⁻²³ In addition, a broad band is observed from about 70 to 100 cm⁻¹. In the stretching region, not shown in Fig. 4, two lines with a separation of about 1.2 cm⁻¹ have been resolved.

Samples 1-3 were grown to study the volume dependence of the Raman frequencies in the a phase. The results for these samples are summarized in Table VI. Because of broadening, only the frequency of the E, line could be determined at 33 °K. The frequencies increase with decreasing molar volumes, while the full widths at : half intensity seem to be independent of volume.

The lattice frequencies are independent of volume and temperature in the harmonic approximation. In the quasiharmonic approximation⁷⁰ the frequencies are dependent on volume. Usually the dominant quasiharmonic contribution to the volume dependence arises because of a shift in the point of evaluation of the second order force constants used in a harmonic calculation. A measure of the volume dependence of the normal mode frequencies $\omega(j)$ is given by the Grüneisen parameter of the *j*th mode

 $\gamma_j = (-\partial \ln \omega(j) / \partial \ln V)_T, \qquad (1)$ where V is the molar volume. These parameters are critically dependent on the form of the intermolecular

> FIG. 4. Raman spectrum in the lattice region of the α phase for a sample with a molar volume of 26, 82 cm3/ mole at 8 °K. Instrumental resolution is 1 cm

and the second

J. Chem. Phys., Vol. 64, No. 1, 1 January 1976